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a b s t r a c t

A weighted-integral based scheme (WIBS) and a weighted essentially non-oscillatory
(WENO)-WIBS are constructed, where the integral of the unknown function with a set of
linearly independent test functions are recorded on every cell. The time evolutions of these
recordings are computed with TVD Runge–Kutta method. At the boundary of every two
cells, the function values are interpolated from the recordings of the neighboring cells to
calculate flux and volumetric integral in the weak form.

Our basic idea is to increase the order of interpolation by increasing both the interpolat-
ing cells and cell recordings simultaneously. The interpolation on more cells naturally per-
mits the use of WENO idea to capture the discontinuity, while more cell recordings can
shrink the size of the interpolating stencil. The compactness of the reconstruction stencil
can increase the accuracy and fully retain it at the boundary. The WIBS so constructed
may include as special cases a quite general class of the numerical methods in computa-
tional fluid dynamics, such as finite-volume method, finite difference method, discontinu-
ous Galerkin scheme, spectral volume method, spectral difference method, finite element
method, and PnPm scheme recently designed by Dumbser et al. [Journal of Computational
Physics 227 (2008) 8209–8253], etc.

In this paper the property of WIBS and WENO-WIBS on one-dimensional hyperbolic con-
servation-law systems is systematically explored. In addition to the high stability and order
of accuracy for smooth region, the WENO-WIBS exhibits high resolution and non-oscilla-
tory property in capturing the discontinuity. The numerical experiments of WIBS and
WENO-WIBS on various benchmark problems are favorably compared with the results
obtained by other high-order methods.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

High-order computational methods are extensively needed for solving problems in computational fluid dynamics (CFD).
For flow problems with complex structures and broad range of characteristic scales, high resolution is necessary to extract
correctly the information of the flow field. Examples include the direct numerical simulation (DNS) and the large-eddy sim-
ulation (LES) of turbulence, as well as computational aero-acoustics (CAA). Moreover, if the flow fields involve shock waves,
those schemes should be non-oscillatory near discontinuities but without excessive damping of the turbulent or acoustic
fluctuations.

Weighted essentially non-oscillatory (WENO) schemes ([11,8,2]) are a powerful class of high-order numerical schemes. It
is very robust—having very good convergence properties and computational efficiency. Through weighted combination of
the interpolations on sub-stencils (to select smooth sub-stencil near discontinuity and recover the high-order basic stencil
. All rights reserved.
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interpolation in smooth region), the numerical oscillations near the discontinuities are effectively suppressed and, at the
same time, the high accuracy order is successfully achieved in smooth region. But numerical tests indicate that classical
WENO schemes are usually not optimal for computing turbulent flows or aero-acoustic fields because they may lead to a
significant damping of the turbulent or acoustic fluctuations, i.e. they are too diffusive for short waves.

In compact scheme [10] and discontinuous Galerkin scheme (DG) [20], there are more than one recordings on every cell,
by which the size of interpolation stencil is greatly shrunk, resulting in a high resolution for short waves in smooth region.
But, as is well known, compact scheme is hard to be extended to unstructured meshes and not suitable for capturing discon-
tinuities, because the excessive recordings are not locally updated. While in DG the numerical oscillations is suppressed by
flux limiter, which often leads to deterioration of accuracy near the extrema in smooth region.

How to incorporate compact stencil and WENO interpolation into one scheme has been the goal of many recent efforts.
These include the hybrid compact-ENO/WENO scheme ([1,12,9,14]), where in the smooth region a compact scheme is used,
while in the region near discontinuities a scheme that can capture discontinuity without oscillation is used. However,
although this hybrid approach does overcome some drawbacks of both compact and WENO schemes, new problems could
arise. For example, indicators are needed to distinguish discontinuities, and switching between the two schemes may cause a
loss in accuracy. Moreover, since the two schemes have different structures, the hybrid scheme is often inefficient in parallel
computing. A recent development in this area can be found in Zhang’s paper [21], where the related information are also
introduced.

Another attempt is Hermite WENO scheme, where not only the primitive variable but also its derivatives are evolved in
time. For this purpose, a Hermite polynomial is defined to interpolate the solution and its derivatives. Van-Leer [19] was the
first to study in detail such schemes in a finite-difference context, which was followed by many studies such as Refs. [6,3,13].
Recently, Qiu and Shu [15,16] proposed a 5th-order WENO scheme based on Hermite polynomials for solving 1D nonlinear
conservation-law systems. Later, Capdeville [4] has made more exploration, including the new weighted combination meth-
ods and many other problems.

Based on the frame of DG, many improvements have been explored to incorporate WENO interpolation to save memory
cost and increase the stability. For example Balsara et al. [23] have developed a kind of hybrid RKDG-HWENO scheme where
a WENO construction is designed to recover the higher moments in DG method. They used limiter to capture discontinuities
in troublesome zones. More recently, Dumbser et al. [7] have developed a kind of PnPm scheme, where, on every cell, orthog-
onal bases are used and the order of accuracy is increased by using the information not only on every cell but also on its
neighboring cells to interpolate the function valve. The general frame of this scheme is the Galerkin method. On every cell
the differential equation is locally solved and a Riemann solver is used to compute the boundary flux, by which the order of
accuracy in time direction can reach the same order as that of spatial one. This method can increase the order of accuracy by
adding the cell recordings and interpolating cells at the same time, which makes it easy to construct very high order scheme.

Further investigations have shown that the stability of PnPm is better than the original DG scheme. Dumbser et al. [7]
have also tried to incorporate WENO method in the interpolation step to capture discontinuity. They showed some exper-
iments on the case, where there is only one recording on every cell (corresponding to finite-volume method), and mentioned
that the WENO procedure for the case of more than one-cell recordings was still under exploring.

In this paper, we follow Dumbser et al.’s [7] concept to add cell recordings and interpolating cells at the same time, but
construct our scheme in a framework different from the Galerkin method, which is more general and fundamental: the
weighted-integral of the equation on every cell. In other words, it is a weighted-integral based scheme (WIBS). The cell
recordings are chosen to be the weighted integration of the unknown function with a set of linearly independent (not nec-
essarily orthogonal) test functions, which are easier to construct compared to the PnPm scheme, where the test functions
must be orthogonal. In our scheme, the function value is interpolated on every half cell (not the full cell) region and a
TVD Runge–Kutta method [17] is used in temporal integration. As to the capture of discontinuities, we add the WENO inter-
polation into WIBS (WENO-WIBS) for the case of two-cell recordings. Because positive optimal weights do not always exist in
Hermite interpolation, we constructed a new weighed combination with no use of the optimal weights.

The WIBS so constructed may include a quite general class of the numerical methods in computational fluid dynamics as
special cases. A proper choice of the test functions and interpolation method in WIBS can recover many existing methods,
such as finite difference method, finite volume method, DG, spectral volume method [20], spectral difference method
[20], finite element method, and PnPm [7], etc.

This paper explores the property of WIBS and WENO-WIBS on 1-dimensional (1D) hyperbolic conservation-law equation.
On various benchmark problems, WIBS and WENO-WIBS show their strong stability, high-order of accuracy, and high res-
olution for short waves. A high resolution for discontinuities is also found with very small numerical oscillation.

Compared to RKDG-HWENO [23] and PnPm [7] schemes, the WIBS and WENO-WIBS have several advantages and
differences:

1. Because WIBS is based on the weak form (not Galerkin method), the test functions of WIBS are not necessarily orthog-
onal and so easier to construct. The only restriction is their linear independence.

2. WIBS is more stable than PnPm.
3. WENO-WIBS has better effects on capturing discontinuity than PnPm.
4. Our WENO procedure does not need the existence of positive optimal weights, which is different from RKDG-HWENO

and many other WENO methods.
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In Section 2 we present the construction of WIBS of various orders and an analytical discussion of the stability of 3rd-or-
der WIBS. The construction of WENO-WIBS is introduced in Section 3. In Section 4 the schemes are numerically tested
regarding to their stability, accuracy, resolution on short waves, and discontinuity capturing. Conclusion remarks are given
in Section 5.

2. The construction of WIBS

Consider one-dimensional (1D) scalar conservative law
ut þ f ðuÞx ¼ 0: ð1Þ
For simplicity, assume the grid points {xi�1/2} are uniformly distributed with the cell size xi+1/2 � xi�1/2 = Dx and cell cen-
ters xi ¼ 1

2 ðxiþ1=2 þ xi�1=2Þ. Denote the cells by Ii = [xi�1/2,xi+1/2].
On every cell we record the integrals:
v im ¼
Z

Ii

uðxÞ/imðxÞdx � hu;/imiIi
; ð2Þ
where {/im(x)}m=1, . . . , M is a set of linearly independent test functions and the notation h�iIi
means integral over Ii. Integrating

(1) � /im(x) over Ii, we obtain a weak form of the conservation law:
dv im

dt
þ f ðuÞ/imj@Ii

� hf ðuÞ; @x/imiIi
¼ 0: ð3Þ
For very half cell x 2 [xi,xi+1], function u(x) can be interpolated by the neighboring cell recordings
v jmðj ¼ iþ K1; iþ K1 þ 1; . . . ; iþ K2;m 2 ½0;M�;K1;K2 2 Z;K1 6 K2). With this approximate u(x) we can calculate the function
values at xi+1/2 and xiþal

ðal 2 ð0;1Þ; l ¼ 1;2; . . . ; L), where L depends on the order of the scheme. The numerical flux at these
points, denoted by f̂ iþ1=2 and f̂ iþal

, can be obtained:
f̂ iþ1=2 ¼ hðu�iþ1=2;u
þ
iþ1=2Þ; f̂ iþal

¼ hðu�iþal
; uþiþal

Þ; ð4Þ
where u� and u+ are numerical approximations to the point values from left and right, respectively. The fluxes in (4) satisfy
the usual numerical fluxes conditions such as Lipschitz continuity and consistency, etc. In this paper we choose the following
local Lax–Friedrichs flux:
hða; bÞ ¼ 1
2

f ðaÞ þ f ðbÞ þ cða� bÞ½ �; ð5Þ
where c = maxu2Djf0(u)j, D = [min(a,b),max(a,b)].
The second term f ðuÞ/imj@Ii

in (3) can be computed from half-point numerical flux f̂ iþ1=2. As to the third term, with
f̂ i�1þal

; f̂ i�1=2 and f̂ iþal
; f̂ iþ1=2, the function f(u) can be interpolated to calculate the integral. The method of lines ODEs are then

integrated by a TVD Runge–Kutta method in [17], of which the third-order version is used in the present paper. This is the
whole construction of the scheme.

It is easily found that if {/im} and the reconstruction method of u(x) are properly chosen, almost all of the existing
schemes can be recovered from the present framework. For example, setting {/im} = 1 would recover the classical finite-vol-
ume method. If {/im} = d(x) and the reconstruction is targeted to approximating the derivatives, the scheme would become
the classical finite difference method. As {/im} is chosen as a set of independent functions, if the boundary and volumetric
integrals are obtained in the same way as those in DG method, the scheme would recover or become equivalent to DG. More-
over, if
/im ¼ 1 8x 2 Iim; /im ¼ 0 8x R Iim; ð6Þ
where Iim � Ii,Iim \ Iin = £(m – n),
S

mIim = Ii, and a corresponding reconstruction of u(x) and the numerical fluxes are used, we
would obtain spectral volume method [20]. It is also easy to recover spectral difference method, finite element method, and
many other existing methods, which will not be shown here one by one.

In the following subsections A to E, we give the details of a class of 2nd- to 10th-order schemes for 1D conservation law,
where on every cell two test functions are used. Define the local coordinate n = (x � xi)/Dx. The test functions are
/i1 ¼ 1=Dx; /i2 ¼ ðx� xiÞ=Dx2 ¼ n=Dx: ð7Þ
Because the numerical flux at half point f̂ iþ1=2 is always computed, from (3) the half discrete form can be written as
dv i1

dt
þ f̂ iþ1=2 � f̂ i�1=2

Dx
¼ 0;

dv i2

dt
þ f̂ iþ1=2 þ f̂ i�1=2

2Dx
� Vi ¼ 0;

ð8Þ
where
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Vi ¼ hf ðuÞ; @x/i2iIi
¼ 1

Dx

Z 1=2

�1=2
f ðnÞdn
which is approximated by interpolation of different orders in schemes of corresponding orders.

2.1. The construction of 2nd-order WIBS

The order of the scheme is determined by the interpolation of u(x) and f(u). The construction of the scheme contains two
steps:

Step 1: Interpolate function u(x) to compute the numerical fluxes at specific points on the half cell.
Consider a stencil {Ii,Ii+1}, a 2nd-order interpolation of u�(n) is
huðxÞ;/i1iIi
¼ v i;1; huðxÞ;/i2iIi

¼ v i;2 ) u�ðnÞ ¼ v i;1 þ 12v i;2n: ð9Þ
Thus we can approximate the function value at xi+1/2:
u�iþ1=2 ¼ v i;1 þ 6v i;2: ð10Þ
uþiþ1=2 is a mirror symmetric of u�iþ1=2 with respect to i + 1/2:
uþiþ1=2 ¼ v iþ1;1 � 6v iþ1;2: ð11Þ
With these u�iþ1=2 and the local Lax–Friedrichs flux (5), f̂ iþ1=2 can be calculated.
Step 2: Interpolate f(x) to obtain the volumetric integral.
From f̂ i�1=2 and f̂ iþ1=2; f ðnÞ can be approximated to 2nd order:
f ðnÞ ¼ 1
2
ðf̂ i�1=2 þ f̂ iþ1=2Þ þ ðf̂ iþ1=2 � f̂ i�1=2Þn: ð12Þ
Then the volumetric integral in (8) is
Vi ¼
1
Dx

Z 1=2

�1=2
f ðnÞdn ¼ 1

Dx
f̂ i�1=2 þ f̂ iþ1=2

2
: ð13Þ
The substitution of this Vi into (8) yields the half discrete form. A TVD Runge–Kutta method is used to solve the ODE sys-
tems in time direction.

2.2. The construction of 3rd-order WIBS

A similar procedure can be done to construct a 3rd-order scheme.
Step 1: Interpolate function u(x) to compute the numerical fluxes at specific points on the half cell.
Consider a stencil {Ii, Ii+1}, we can use vi,1, vi,2 and vi+1,1 to approximate u�iþ1=2;u

�
iþ1=4, and u�iþ3=4 to 3rd order:
u�iþ1=4 ¼
49
48

v i;1 þ
13
4

v i;2 �
1

48
v iþ1;1;

u�iþ1=2 ¼
5
6

v i;1 þ 4v i;2 þ
1
6

v iþ1;1;

u�iþ3=4 ¼
25
48

v i;1 þ
13
4

v i;2 þ
23
48

v iþ1;1:

ð14Þ
And uþiþ1=2;u
þ
iþ1=4, and uþiþ3=4 can be constructed from vi+1,1,vi+1,2 and vi,1 as:
uþiþ1=4 ¼
25
48

v iþ1;1 �
13
4

v iþ1;2 þ
23
48

v i;1;

uþiþ1=2 ¼
5
6

v iþ1;1 � 4v iþ1;2 þ
1
6

v i;1;

uþiþ3=4 ¼
49
48

v iþ1;1 �
13
4

v iþ1;2 �
1

48
v i;1:

ð15Þ
Again the local Lax–Friedrichs flux (5) is used to compute f̂ iþ1=4; f̂ iþ1=2, and f̂ iþ3=4.
Step 2: Interpolate f(x) to obtain the volumetric integral.
As in the construction of 2nd-order scheme, the same procedure leads to
Vi ¼
1
Dx

Z 1=2

�1=2
f ðnÞdn ¼ 8ðf̂ i�1=4 þ f̂ iþ1=4Þ þ f̂ i�1=2 þ f̂ iþ1=2

18Dx
: ð16Þ
The substitution of this Vi into (8) yields the half discrete form. A TVD Runge–Kutta method is used to solve the ODE sys-
tems in time direction.
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2.3. The construction of 4th-order WIBS

Step 1: Interpolate function u(x) to compute the numerical fluxes at specific points on the half cell.
Consider a stencil {Ii, Ii+1}, we can use vi,1, vi,2, vi+1,1 and vi+1,2 to approximate ui+1/2, ui+1/4, and ui+3/4 to 4th order (this time

we construct a center scheme):
uiþ1=4 ¼
131
128

v i;1 þ
209
64

v i;2 �
3

128
v iþ1;1 þ

1
64

v iþ1;2;

uiþ1=2 ¼
1
2

v i;1 þ 2v i;2 þ
1
2

v iþ1;1 � 2v iþ1;2;

uiþ3=4 ¼ �
3

128
v i;1 �

1
64

v i;2 þ
131
128

v iþ1;1 �
209
64

v iþ1;2:

ð17Þ
Substituting them into f(u) yields the numerical fluxes at the corresponding points.
Step 2: Interpolate f(x) to obtain the volumetric integral.
Here Vi is the same as in 3rd order scheme (16). The substitution of this Vi into (8) yields the half discrete form. A TVD

Runge–Kutta method is used to solve the ODE systems in time direction.

2.4. The construction of 6th-order WIBS

Step 1: Interpolate function u(x) to compute the numerical fluxes at specific points on the half cell.
Consider a stencil {Ii�1, Ii, Ii+1, Ii+2}, we can use vi�1,1, vi�1,2, vi,1, vi,2, vi+1,1 and vi+1,2 to approximate u�iþ1=2;u

�
iþ1=4, and u�iþ3=4 to

6th order:
u�iþ1=4 ¼
1763

110592
v i�1;1 þ

2741
55296

v i�1;2 þ
3223
3072

v i;1 þ
102391
27648

v i;2 �
7199

110592
v iþ1;1 þ

12137
55296

v iþ1;2;

u�iþ1=2 ¼
13

108
v i�1;1 þ

25
54

v i�1;2 þ
7

12
v i;1 þ

241
54

v i;2 þ
8

27
v iþ1;1 �

28
27

v iþ1;2;

u�iþ3=4 ¼
239

4096
v i�1;1 þ

1451
6144

v i�1;2 þ
7

3072
v i;1 þ

3277
3072

v i;2 þ
11543
12288

v iþ1;1 �
17665
6144

v iþ1;2:

ð18Þ
And uþiþ1=2;u
þ
iþ1=4, and uþiþ3=4 are a mirror symmetric of them with respect to i + 1/2:
uþiþ1=4 ¼
239

4096
v iþ2;1 �

1451
6144

v iþ2;2 þ
7

3072
v iþ1;1 �

3277
3072

v iþ1;2 þ
11543
12288

v i;1 þ
17665
6144

v i;2;

uþiþ1=2 ¼
13

108
v iþ2;1 �

25
54

v iþ2;2 þ
7

12
v iþ1;1 �

241
54

v iþ1;2 þ
8

27
v i;1 þ

28
27

v i;2;

uþiþ3=4 ¼
239

4096
v iþ2;1 �

1451
6144

v iþ2;2 þ
7

3072
v iþ1;1 �

3277
3072

v iþ1;2 þ
11543
12288

v i;1 þ
17665
6144

v i;2:

ð19Þ
Again the local Lax–Friedrichs flux (5) is used to compute f̂ iþ1=4; f̂ iþ1=2, and f̂ iþ3=4.
Step 2: Interpolate f(x) to obtain the volumetric integral.
The same procedure as in the construction of 2nd-order scheme leads to:
Vi ¼
1
Dx

Z 1=2

�1=2
f ðnÞdn ¼ 3ðf̂ i�3=4 þ f̂ iþ3=4Þ þ 205ðf̂ i�1=4 þ f̂ iþ1=4Þ þ 17ðf̂ i�1=2 þ f̂ iþ1=2Þ

450Dx
: ð20Þ
The substitution of this Vi into (8) yields the half discrete form. A TVD Runge–Kutta method is used to solve the ODE sys-
tems in time direction.

2.5. The construction of 10th-order WIBS

Step 1: Interpolate function u(x) to compute the numerical fluxes at specific points on the half cell.
We consider a stencil {Ii�2, Ii�1, Ii, Ii+1, Ii+2, Ii+3}. Then u�iþ1=2;u

�
iþ1=6;u

�
iþ1=3;u

�
iþ2=3, and u�iþ5=6 can be approximated to the 10th

order, which are given in the Appendix.
Again the local Lax–Friedrichs flux (5) is used to compute f̂ iþ1=6; f̂ iþ1=3; f̂ iþ1=2; f̂ iþ2=3, and f̂ iþ5=6.
Step 2: Interpolate f(x) to obtain the volumetric integral.
The same procedure as in the construction of 2nd-order scheme leads to:
Vi ¼
1

1058400Dx
1045ðf̂ i�5=6 þ f̂ iþ5=6Þ � 11584ðf̂ i�2=3 þ f̂ iþ2=3Þ þ 115008ðf̂ i�1=3 þ f̂ iþ1=3Þ þ 316974ðf̂ i�1=6 þ f̂ iþ1=6Þ
h

þ107757ðf̂ i�1=2 þ f̂ iþ1=2Þ
i
: ð21Þ
The substitution of this Vi into (8) yields the half discrete form. A TVD Runge–Kutta method is used to solve the ODE sys-
tems in time direction.
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2.6. A stability analysis

For linear convection equation where f(u) = au, a = const., a > 0, a Fourier analysis of the stability of WIBS can be carried
out analytically. To demonstrate the precess we consider the 3rd-order WIBS. Because a > 0, only u�iþ1=2;u

�
iþ1=4, and u�iþ3=4 are

to be computed, and at every point there is f̂ ¼ au�. Thus the final half discrete form can written as:
dv i1

dt
þ a

6Dx
½�5v i�1;1 þ 4v i;1 þ v iþ1;1 þ 24ðv i;2 � v i�1;2Þ� ¼ 0;

dv i2

dt
þ a

36Dx
½5v i�1;1 � 8v i;1 þ 3v iþ1;1 þ 12ðv i�1;2 þ v i;2Þ� ¼ 0:

ð22Þ
Assume
v i;1 ¼ AðtÞejkxi ; v i;2 ¼ BðtÞejkxi ;
where j ¼
ffiffiffiffiffiffiffi
�1
p

, and substitute them into (22), it easily follows that
AðtÞ ¼ C1 exp
r1ðcÞat

Dx

� �
þ C2 exp

r2ðcÞat
Dx

� �
; c ¼ kDx; ð23Þ
where C1 and C2 are two constants and
r1ðcÞ ¼ �
1

12
ejc � 1

2
þ 1

4
e�jc þM; r2ðcÞ ¼ �

1
12

ejc � 1
2
þ 1

4
e�jc �M; M ¼ 1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2jc þ 52ejc � 186þ 180e�jc � 31e�2jc

p
:

The Taylor expansions of r1(c) and r2(c) are
r1ðcÞ ¼ �jc þ 3
40

jc5 � 1
8

c6 þ Oðc7Þ; r2ðcÞ ¼ �
2
3
þ 1

3
jc þ Oðc2Þ:
Thus when c ? (Dx ? 0), A(t) ? C1e�jkat, which recovers the exact solution. The lowest-order real parts of r1(c) and r2(c)
are � 1

8 c6 and � 2
3, respectively, implying that in (23) the second term diminishes very quickly with the increase of t, and the

first term diminishes too when c is small enough. Thus the scheme is stable for small c. Fig. 1 shows the distribution of the
real parts of r1(c) and r2(c), which are never greater than 0. Hence A(t) will not grow for arbitrary c P 0. While it is easy to
derive
dB
dt
¼ �1

3
ð1þ e�jcÞBðtÞ þ 1

36
ð8� 3ejc � 5e�jcÞAðtÞ:
When A(t) diminishes, because � 1
3 Rð1þ e�jcÞ 6 0, B(t) will decrease too. Thus the half discrete form of 3rd-order WIBS is

unconditionally stable for arbitrary c. Of course, as to the stability of the scheme, the method for time integration should
be considered too. But the present analysis shows that if the time integration is accurate enough, 3rd-order WIBS can achieve
high stability, which has been validated by the numerical experiment in the stability test to be reported in Section 4.
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Fig. 1. The distribution of the real parts of r1(c) (left) and r2(c) (right). c 2 [0,p].
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3. The construction of WENO-WIBS

A weighted essentially non-oscillatory (WENO) method is applied to WIBS (WENO-WIBS) in the reconstruction of u(x) to
capture the discontinuity or large gradient field. Different designed WENO can be constructed for schemes of different orders
in the preceding section. Specifically, we present here the WENO construction for the 6th- and 10th-order scheme.

3.1. The 6th-order WENO-WIBS

Consider the 6th-order WENO-WIBS (WENO-WIBS6) first. For the basic 6th-order stencil S0 = {vi�1,1,vi�1,2,vi,1,vi,2,vi+1,1,
vi+1,2}, we choose the following sub-stencils
S1 ¼ fv i�1;1;v i�1;2;v i;1; v i;2g; S2 ¼ fv i�1;1;v i�1;2; v i;1;v iþ1;1g;
S3 ¼ fv i;1; v i;2; v iþ1;1;v iþ1;2g; S4 ¼ fv i;1; v iþ1;1;v iþ2;1;v iþ2;2g

ð24Þ
to approximate u�(x) up to the 3rd order with least-square interpolation respectively. Denote approximate result as ujðxÞ�

(j = 1, 2, 3, 4) for each sub-stencil Sj. The 6th-order approximation of u�(x) on S0 is denoted by u0ðxÞ�. We compute the
smoothness indicator for each sub-stencil, denoted by bj, which measures how smooth the function ujðxÞ� is on the sub-cell
[xi,xi+1]. The smaller this smoothness indicator bj, the smoother the function ujðxÞ� is in the sub-cell. We use the same recipe
for the smoothness indicator as in [8]:
bj ¼
X2

k¼1

Z xxþ1=2

xi�1=2

Dx2k�1 @k
xujðxÞ�

h i2
dx: ð25Þ
In the actual numerical implementation the smoothness indicators bj are written out explicitly as quadratic forms of the
cell recordings vi,m:
b1 ¼ �216
37

v i�1;2 þ
36
37
ðv i;1 � v i�1;1Þ þ

228
37

v i;2

� �2

þ 13
3

6ðv i�1;2 þ v i;2Þ
� �2

;

b2 ¼ �149
301

v i�1;1 þ
12

301
v i�1;2 �

2
301

v i;1 þ
151
301

v iþ1;1

� �2

þ 13
3

283
602

v i�1;1 �
72

301
v i�1;2 �

289
301

v i;1 þ
295
602

v iþ1;1

� �2

;

b3 ¼
228
37

v i;2 þ
36
37
ðv iþ1;1 � v i;1Þ �

216
37

v iþ1;2

� �2

þ 13
3
½6ðv i;2 � v iþ1;2Þ�2;

b4 ¼ �446
301

v i;1 þ
580
301

v iþ1;1 �
134
301

v iþ2;1 �
132
301

v iþ2;2

� �2

þ 13
3

295
602

v i;1 �
289
301

v iþ1;1 þ
283
602

v iþ2;1 þ
72

301
v iþ2;2

� �2

:

ð26Þ
The nonlinear weights are defined as
xj ¼
�xjP
k

�xk
; �xk ¼

1

ð�þ bkÞ
2 ; ð27Þ
where � is a small number to avoid the denominator to become 0. We use � = 10�6 for all computations in this paper. xj are
used to select sub-stencil. To realize the transition from sub-stencils Sj to the whole stencil S0 in the smooth region, define
new weights as
~x1 ¼ ~xðsÞ; ~x2 ¼ 1� ~x1; s ¼ N
N � 1

XN

k¼1

ðxk � 1=NÞ2; ð28Þ
where N = 4 is the number of the sub-stencils. Here s = 0 means the sub-stencils have equal weights and the function in the
neighboring region is smooth; and s = 1 meas one sub-stencil has largest sub-stencil weight with x = 1, namely the function
in the neighboring region contains discontinuity. Hence the magnitude of s reflects the deviation of the function from a
smooth one. The function ~xðsÞ ðP 0Þ satisfies:
~xð0Þ ¼ 0; ~xð1Þ ¼ 1;
d ~x
ds

				
s¼0
¼ d ~x

ds

				
s¼1
¼ 0: ð29Þ
Here we choose it to be
d ~xmn

ds
¼ Cðmþ nþ 2Þ

Cðmþ 1ÞCðnþ 1Þ s
mð1� sÞn; m; n 2 N; ð30Þ
where C(x) is the Gamma function. Obviously, this ~xmnðsÞ satisfies (29). For schemes of certain orders, sometimes m should
be greater than a special natural number. With numerical experiments we found that ~xmnðsÞ can be set as ~x32ðsÞ ¼
s4ð10s2 � 24sþ 15Þ.

With these weights, the final interpolation of u�(x) is obtained by
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CFL
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u�ðxÞ ¼ ~x1

XN

k¼1

xkukðxÞ� þ ~x2u�0 ðxÞ: ð31Þ
Thus when s ¼ 0; ~x1 ¼ 0; ~x2 ¼ 1;u�ðxÞ ¼ u0ðxÞ�; when s ¼ 1; ~x1 ¼ 1; ~x2 ¼ 0;u�ðxÞ ¼
PN

k¼1xkukðxÞ� which realizes the selec-
tion of the smoothest sub-stencil. Fig. 2 gives the shapes of ~x12ðsÞ; ~x21ðsÞ and ~x32ðsÞ.

From u�(x) in (31) we can obtain u�iþ1=4;u
�
iþ1=2, and u�iþ3=4, whose mirror symmetric with respect to j + 1/2 are uþiþ1=4;u

þ
iþ1=2,

and uþiþ3=4. The rest procedures are the same as in the construction of 6th-order WIBS. It is easily proven that this construction
of weighted interpolation can keep excellent accuracy in smooth region. The order of accuracy will be examined numerically in
Section 4.

3.2. Tenth-order WENO-WIBS

A similar procedure is constructed for 10th-order WENO-WIBS (WENO-WIBS10). We use the same sub-stencils as in
WENO-WIBS6, but change S0 to the stencil of WIBS10. Thus the weights and the combination procedure are the same as
in WENO-WIBS6. The only difference is that there are five point-values to compute u�iþ1=2; u�iþ1=6; u�iþ1=3; u�iþ2=3, and u�iþ5=6.

For systems of conservation laws, such as the Euler equations of gas dynamics, the reconstructions are all performed in
the local characteristic directions to avoid oscillation; see, e.g. [5] for details.

4. Numerical validations

In this section we present the results of our numerical experiments for nth-order WIBS (WIBSn) and WENO-WIBSn with
3rd order TVD Runge–Kutta method in time direction. These results are compared with 6th-order Hermite upwind WENO
scheme (HCWENO6) in [4] and 5th-order finite-volume WENO schemes (WENO5) in [5]. An uniform mesh with N cells is
used for all tests. Although the WIBSs and WENO-WIBSs are found to be highly stable, to realize the high spatial accuracy
the time step should be small enough, as will soon be shown in the accuracy tests. Hence we choose CFL = 0.1 for all of
the computation experiments except for stability and accuracy tests.

4.1. Stability tests

With numerical experiments on the linear convection equation we found the critical CFL numbers of the 2nd 	 10th-or-
der WIBS, which are shown in Table 1. We can see that WIBS is highly stable. The critical CFL number decreases slightly with
the increasing of the scheme order (note that because WIBS4 is a center scheme, it has lower critical CFL).

4.2. Accuracy tests

In this subsection we test the accuracy of WENO-WIBS6 and WENO-WIBS10 on nonlinear scalar problems and nonlinear
systems.
s
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1

Fig. 2. The shape of ~xmnðsÞ. Dashdot: ~x12ðsÞ; solid: ~x21ðsÞ; and dashed: ~x32ðsÞ.

CFL numbers of the 2nd 	 10th-order WIBS for linear convection equation.

WIBS2 WIBS3 WIBS4 WIBS6 WIBS10

0.942 1.269 0.538 0.662 0.539



Table 2
Burgers equation; u(x, 0) = 1/2 + sin (px); periodic boundary conditions. Compare the accuracy of WENO-WIBS6 and HCWENO6 [4].

N WENO-WIBS6 HCWENO6

L1 error Order L1 error Order Max(CFL) L1 error Order L1 error Order

10 1.16E�3 – 7.91E�3 – 0.40 2.51E�4 – 5.81E�4 –
20 3.97E�5 4.9 3.43E�4 4.5 0.20 3.18E�5 3.0 1.42E�4 2.0
40 8.85E�7 5.5 1.05E�5 5.0 9.0E�2 9.36E�7 5.1 6.03E�6 4.6
80 1.34E�8 6.0 1.84E�7 5.8 3.8E�2 2.14E�8 5.4 1.57E�7 5.3
160 2.17E�10 5.9 3.17E�9 5.8 1.8E�2 4.20E�10 5.7 3.47E�9 5.5
320 5.59E�12 5.3 8.03E�11 5.3 9.0E�3 7.30E�12 5.9 6.18E�11 5.8
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Example 1. Solve the nonlinear scalar Burgers equation
Table 3
Burgers

N

10
20

Table 4
One-dim
accurac

N

10
20
40
80
160
ut þ
u2

2

� �
x
¼ 0 ð32Þ
with the initial condition u(x,0) = 0.5 + sin(px), and a 2-periodic boundary condition. When t = 0.5/p the solution is still
smooth. The errors and numerical orders of accuracy by WENO-WIBS6 and HCWENO6 [4] are shown in Table 2. We can
see that WENO-WIBS6 achieves its designed order of accuracy, with slightly smaller errors than those of HCWENO6. Because
the time discretization is 3rd order, to exhibit the spatial accuracy, time step should be small enough. In Table 2 we also give
the maximum CFLs to achieve the corresponding errors.

The errors of WENO-WIBS10 are shown in Table 3. But this time the designed order cannot be recovered. Perhaps the
designed accuracy can be recovered only if the grid size is sufficiently small. But when the grid number N > 80, the errors will
be too small for double-precision real number. So we stop the verification of the accuracy of WNO-WIBS10 here.
Example 2. Solve the nonlinear system of Euler equations
ut þ f ðuÞx ¼ 0 ð33Þ
with
u ¼ ðq;qv; EÞT ; f ðuÞ ¼ ðqv ;qv2 þ p;vðEþ pÞÞT :
Here q is the density, v is the velocity, E is the total energy, p is the pressure, which is related to the total energy by E = p/
(c � 1) + qv2/2 with c = 1.4. The initial condition is set to be q(x,0) = 1 + 0.2sin(px), v(x,0) = 1, p(x,0) = 1, with a 2-periodic
boundary condition. The exact solution is q(x, t) = 1 + 0.2sin[p(x � t)], v(x, t) = p(x, t) = 1. We compute the solution up to
t = 2. The errors and numerical orders of accuracy of the density q for WENO-WIBS6 are shown in Table 4, in comparison
with the results of HCWENO6 [4]. We can see that the errors of WENO-WIBS6 are about two orders smaller those of HCW-
ENO6 and its designed order of accuracy is perfectly recovered (when N = 160 the error is approaching the machine error for
double-precision real number, so the order of accuracy does not show the designed one).
4.3. Resolution for short waves

It is well known that WENO schemes are diffusive for short waves. To see the ability of WENO-WIBS in capturing short
waves we have done the following experiment.
equation; u(x, 0) = 1/2 + sin(px); periodic boundary conditions. The errors of WENO-WIBS10.

L1 error Order L1 error Order Max(CFL) N L1 error Order L1 error Order Max(CFL)

4.66E�4 3.70E�3 2.4E�2 40 5.00E�8 7.3 7.26E�7 7.0 8.0E�4
7.84E�6 5.9 9.45E�5 5.3 1.2E�3 80 6.13E�11 9.7 1.26E�9 6.9 6.0E�4

ensional Euler equations; q(x,0) = 1 + 0.2sin(px), u(x,0) = 1, p(x,0) = 1; periodic boundary conditions, t = 2; L1 and L1 errors of density q. Compare the
y of WENO-WIBS6 and HCWENO6 [4].

WENO-WIBS6 HCWENO6

L1 error Order L1 error Order L1 error Order L1 error Order

5.31E�6 – 1.12E�5 – 7.15E�4 – 5.59E�4 –
4.41E�8 6.9 7.30E�8 7.3 8.92E�6 6.2 7.00E�6 6.3
3.98E�10 6.8 6.34E�10 6.8 1.21E�7 6.2 9.49E�8 6.2
4.24E�12 6.5 6.76E�12 6.6 1.75E�9 6.1 2.12E�9 6.1
1.27E�13 5.1 5.11E�13 3.7 3.14E�11 6.0 3.80E�11 6.0
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Fig. 3. Compare the diffusion of WENO-WIBS6 and WENO5 for computing linear convection equation with sine wave initial condition and periodic
boundary conditions. N = 10 cells, t = 2.
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Example 3. Solve the linear convection equation:
ut þ ux ¼ 0; x 2 ½0;1�; ð34Þ
with the initial condition:
uðx; 0Þ ¼ sinð4pxÞ: ð35Þ
The cell number N = 10, t = 2, with periodic boundary conditions. The results of WENO-WIBS6 and WENO5 are compared in
Fig. 3. Here only five cells are used for every period of sine wave. Obviously, WENO-WIBS6 has a much higher resolution than
WENO5 in capturing short waves.
4.4. Test cases with discontinuities

To test the ability of WENO-WIBS6 and WENO-WIBS10 in capturing discontinuities, we have performed the following
numerical experiments.

Example 4. Solve the linear convection equation(34) with a discontinuous initial condition:
uðx; 0Þ ¼ 1; for x 2 ð0:25;0:75Þ; uðx;0Þ ¼ 0; for x 2 ½0;0:25� [ ½0:75;1�; ð36Þ
and a periodic boundary condition. We compare the results obtained by WENO-WIBS6 and WENO-WIBS10 with WENO5 at
t = 1 and t = 20, respectively. The results are shown in Figs. 4 and 5, where the regions adjacent to the discontinuities are
zoomed in and exhibited. Compared to WENO5, for capturing discontinuity WENO-WIBS6 and WENO-WIBS10 have higher
resolution and smaller numerical oscillation.
Example 5. Solve the same nonlinear Burgers equation (32) as in Example 1 with the same initial and boundary conditions,
except that we now compute the results at t = 1.5/p when a schock has already appeared in the solution. See Fig. 6 (left and
center), WENO-WIBS6 and WENO-WIBS10 give non-oscillation shock transitions for this problem.
Example 6. Solve the nonlinear non-convex scalar Buckley–Leverett problem
ut þ
4u2

4u2 þ ð1� uÞ2

" #
x

¼ 0 ð37Þ
with the initial data u = 1 when 1/2 6 x 6 1 and u = 0 elsewhere. The solution is computed up to t = 0.4. The exact solution is a
shock–rarefaction–contact discontinuity mixture. Some high order schemes may fail to converge to the correct entropy solu-
tion for this problem. As shown in Fig. 6 (right), WENO-WIBS6 gives good resolution to the correct entropy solution for this
problem.
Example 7. Solve the Euler equations (33) with Riemann initial condition for Lax problem
ðq;v ;pÞ ¼ ð0:445;0:698;3:528Þ for x 2 ½�5;0�; ðq;v ;pÞ ¼ ð0:5;0;0:571Þ for x 2 ð0;5�: ð38Þ



x

u(
x,
t=
1)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Exact Solution
WENO-WIBS6
WENO5

0.55 0.6 0.65 0.7
0.9998

0.9999

1

1.0001

1.0002

1.0003

0.3 0.4

1

1.0001

x

u(
x,
t=
20
)

0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Exact Solution
WENO-WIBS6
WENO5

0.55 0.6 0.65 0.7
0.9998

0.9999

1

1.0001

1.0002

1.0003

0.3 0.4
0.9999

1

Fig. 4. The results of WENO-WIBS6 and WENO5 for computing linear convection equation with square wave initial condition and periodic boundary
condition. N = 100 cells, t = 1 and t = 20.
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Fig. 5. The results of WENO-WIBS10 and WENO5 for computing linear convection equation with square wave initial condition and periodic boundary
condition. N = 100 cells, t = 1 and t = 20.
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Fig. 6. Left: Burgers equation. u(x,0) = 0.5 + sin(px). t = 1.5/p, WENO-WIBS6. Center: Burgers equation. u(x,0) = 0.5 + sin(px). t = 1.5/p, WENO-WIBS10.
Right: Buckley–Leverett problem. t = 0.4. For all figures N = 80 cells. Solid line: exact solution; squares: computed solution.
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The computation is run up to t = 1.3. Set the cell number N = 200. In Fig. 7, the left plot is the density obtained by WENO-
WIBS6 (square), compared to that obtained by WENO5 (square) on the right. And Fig. 8 shows the results of WENO-WIBS10.
The solid curves in Figs. 7–10 are exact solutions [22]. Figs. 9 and 10 give the computed velocity and pressure by WENO-
WIBS6 and WENO-WIBS10 against the accurate solution. From these figures we can see that both WENO-WIBS6 and
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Fig. 7. The Lax problem. t = 1.3. WENO-WIBS6 (left) and WENO5 (right), N = 200 cells. Density q. Solid line: exact solution and squares: computed solution.
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Fig. 8. The Lax problem. t = 1.3. WENO-WIBS10, N = 200 cells. Density q. Solid line: exact solution and squares: computed solution.
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Fig. 9. The Lax problem. t = 1.3. Velocity (left) and pressure (right) obtained by WENO-WIBS6, N = 200 cells. Solid line: exact solution and squares:
computed solution.
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Fig. 10. The Lax problem. t = 1.3. Velocity (left) and pressure (right) obtained by WENO-WIBS10, N = 200 cells. Solid line: exact solution and squares:
computed solution.
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Fig. 11. The shock density wave interaction problem. t = 1.8. WENO-WIBS6 (left) and WENO5 (right), N = 200 cells. Density q. Solid line: ‘‘exact solution”
and squares: computed solution.
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WENO-WIBS10 have higher resolution than WENO5 in capturing discontinuities, just like in the computation of linear con-
vection equation with square-wave initial condition; and numerical oscillations have been effectively suppressed. But the
results of WENO-WIBS10 exhibit small numerical oscillations near discontinuities.

The preceding examples contain only shocks and simple smooth region solutions (almost piecewise linear), for which
shock resolution is the main concern and usually a good 2nd-order non-oscillation scheme would give satisfactory results.
There is little advantage in using higher order schemes except for a higher resolution of discontinuities. These numerical
experiments are used mainly to demonstrate the non-oscillatory property of WENO-WIBS6 and 10. A higher-order scheme
would show its advantage when the solution contains both shocks and complex smooth region structures. A typical example
is the problem of shock interaction with entropy waves (Shu–Osher problem) [18].
Example 8. We solve the Euler equations (33) with a moving Mach 3 shock interacting with sine waves in density, i.e.
initially
ðq; v; pÞ ¼ ð3:857143;2:629369;10:333333Þ for x < �4;
ðq; v; pÞ ¼ ð1þ 0:2 sinð5xÞ;0;1Þ for x P �4:

ð39Þ
The computed density q is plotted at t = 1.8 against the reference solution, obtained by WENO5 on N = 3000 cells. We com-
pare the results of WENO-WIBS6 and WENO5 in Fig. 11 (N = 200) and Fig. 12 (N = 300). And the results of WENO-WIBS10 are
shown in Fig. 13: left (N = 200), right (N = 300).

As shown in these figures, WENO-WIBS6 and 10 have better performance than WENO5 in the smooth region with com-
plex structures—the resolution of WENO-WIBS6 on N = 200 cells is even better than that of WENO5 on N = 300 cells. The res-
olution of WENO-WIBS10 for short waves is better than that of WENO-WIBS6.
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Fig. 13. The shock density wave interaction problem. t = 1.8. Results of WENO-WIBS10 on N = 200 (left) and N = 300 (right), respectively. Density q. Solid
line: ‘‘exact solution” and squares: computed solution.

x

D
en
si
ty

-5 -3 -1 1 3 50

1

2

3

4

5

x

D
en
si
ty

-4 -2 0 2 40

1

2

3

4

5

Fig. 12. The shock density wave interaction problem. t = 1.8. WENO-WIBS6 (left) and WENO5 (right), N = 300 cells. Density q. Solid line: ‘‘exact solution”
and squares: computed solution.

6012 L.-J. Xuan, J.-Z. Wu / Journal of Computational Physics 229 (2010) 5999–6014
5. Concluding remarks

In this paper, we have constructed a new class of weighted integral based scheme (WIBS), where the integral of the func-
tion with a set of linearly independent test functions are recorded on every cell. An appropriate choice of the test functions
and interpolation methods can recover many existing schemes.

With proper test functions and interpolation methods, we have constructed a class of WIBS and WENO-WIBS, where the
time integration is performed with TVD Runge–Kutta procedures. The analytical and numerical investigations show that:

1. The high-order WIBS are highly stable.
2. In smooth region, the designed order of accuracy of WENO-WIBS is achieved successfully for nonlinear hyperbolic con-

servation-law systems.
3. Owing to the compactness of WENO-WIBS interpolating stencil, compared to WENO5 the WENO-WIBS6 has higher res-

olution for capturing the discontinuity and short waves in smooth region. The numerical oscillations near the disconti-
nuity are extensively suppressed.

4. The computational cost of WENO-WIBS6 is about 4/3 times that of WENO5 scheme on the same grid.

Since it is straightforward to add cell recordings (just by adding test functions), WIBS and WENO-WIBS can easily retain
accuracy near the boundary. But we have presently confined our work to the problems with trivial boundary conditions
and left this issue to future work. Moreover, both WIBS and WENO-WIBS are constructed on a finite-volume formulation,
and hence can be readily extended to unstructured meshes and multi-dimensional problems. These extensions will be
reported separately.
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Appendix A. The formulae to compute the half-cell values in WIBS10

In WIBS10, from recordings on the neighboring cells fIi�2; Ii�1; Ii; Iiþ1; Iiþ2; Iiþ3g;u�iþ1=2; u�iþ1=2; u�iþ1=6; u�iþ1=3; u�iþ2=3, and u�iþ5=6

can be approximated to 10th order:
u�iþ1=6 ¼ �
3901783

1062882000
v i�2;1 �

6658423
531441000

v i�2;2 �
34247629

1062882000
v i�1;1 �

113339423
531441000

v i�1;2 þ
1863223
1574640

v i;1

þ 171662953
59049000

v i;2 �
149375321

1062882000
v iþ1;1 þ

357054577
531441000

v iþ1;2 �
908599

132860250
v iþ2;1 þ

1503619
66430125

v iþ2;2;

u�iþ1=3 ¼
20699154859

4353564672000
v i�2;1 þ

34541024479
2176782336000

v i�2;2 þ
174278385221

2176782336000
v i�1;1 þ

221994016151
544195584000

v i�1;2

þ 2872838579
3224862720

v i;1 þ
272211312239
60466176000

v i;2 þ
45668338429

2176782336000
v iþ1;1 �

93508489849
544195584000

v iþ1;2

þ 14639988191
4353564672000

v iþ2;1 �
24930464771

2176782336000
v iþ2;2;
u�iþ1=2 ¼
29

3000
v i�2;1 þ

49
1500

v i�2;2 þ
377

3000
v i�1;1 þ

1049
1500

v i�1;2 þ
59

120
v i;1 þ

6049
1500

v i;2 þ
1073
3000

v iþ1;1 �
817
500

v iþ1;2

þ 23
1500

v iþ2;1 �
19

375
v iþ2;2;

u�iþ2=3 ¼
30377191073

4353564672000
v i�2;1 þ

51760387613
2176782336000

v i�2;2 þ
165601161337

2176782336000
v i�1;1 þ

122987791811
272097792000

v i�1;2

þ 307729379
3224862720

v i;1 þ
50947464479
30233088000

v i;2 þ
1747203118313
2176782336000

v iþ1;1 �
844600165189
272097792000

v iþ1;2

þ 82144259977
4353564672000

v iþ2;1 �
133248465637

2176782336000
v iþ2;2;

u�iþ5=6 ¼ �
243347

106288200
v i�2;1 �

404597
53144100

v i�2;2 �
990479

26572050
v i�1;1 �

2570368
13286025

v i�1;2 �
18317
98415

v i;1 �
2030527
1476225

v i;2

þ 16213087
13286025

v iþ1;1 �
48925993
13286025

v iþ1;2 þ
571127

106288200
v iþ2;1 �

843347
53144100

v iþ2;2:
And uþiþ1=2; uþiþ1=6; uþiþ1=3; uþiþ2=3 and uþiþ5=6 are a mirror symmetric of them with respect to i + 1/2:
uþiþ1=6 ¼ �
243347

106288200
v iþ3;1 þ

404597
53144100

v iþ3;2 �
990479

26572050
v iþ2;1 þ

2570368
13286025

v iþ2;2 �
18317
98415

v iþ1;1 þ
2030527
1476225

v iþ1;2

þ 16213087
13286025

v i;1 þ
48925993
13286025

v i;2 þ
571127

106288200
v i�1;1 þ

843347
53144100

v i�1;2;

uþiþ1=3 ¼
30377191073

4353564672000
v iþ3;1 �

51760387613
2176782336000

v iþ3;2 þ
165601161337

2176782336000
v iþ2;1 �

122987791811
272097792000

v iþ2;2

þ 307729379
3224862720

v iþ1;1 �
50947464479
30233088000

v iþ1;2 þ
1747203118313
2176782336000

v i;1 þ
844600165189
272097792000

v i;2

þ 82144259977
4353564672000

v i�1;1 þ
133248465637

2176782336000
v i�1;2;
uþiþ1=2 ¼
29

3000
v iþ3;1 �

49
1500

v iþ3;2 þ
377

3000
v iþ2;1 �

1049
1500

v iþ2;2 þ
59

120
v iþ1;1 �

6049
1500

v iþ1;2 þ
1073
3000

v i;1 þ
817
500

v i;2

þ 23
1500

v i�1;1 þ
19

375
v i�1;2;
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uþiþ2=3 ¼
20699154859

4353564672000
v iþ3;1 �

34541024479
2176782336000

v iþ3;2 þ
174278385221

2176782336000
v iþ2;1 �

221994016151
544195584000

v iþ2;2

þ 2872838579
3224862720

v iþ1;1 �
272211312239
60466176000

v iþ1;2 þ
45668338429

2176782336000
v i;1 þ

93508489849
544195584000

v i;2

þ 14639988191
4353564672000

v i�1;1 þ
24930464771

2176782336000
v i�1;2;

uþiþ5=6 ¼ �
3901783

1062882000
v iþ3;1 þ

6658423
531441000

v iþ3;2 �
34247629

1062882000
v iþ2;1 þ

113339423
531441000

v iþ2;2 þ
1863223
1574640

v iþ1;1

� 171662953
59049000

v iþ1;2 �
149375321

1062882000
v i;1 �

357054577
531441000

v i;2 �
908599

132860250
v i�1;1 �

1503619
66430125

v i�1;2:
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